73. Molecular Polarisability: the Anisotropy of the CarbonOxygen Link.

By R. J. W. Le Fèvre, (Mrs.) A. Sundaram, and (in part) R. K. Pierens.
The longitudinal and transverse polarisabilities of the $\mathrm{C}-\mathrm{O}$ bond have been redetermined via polarity and molar Kerr constant measurements on $1,3,5$-trioxan. Values of $10^{28} b_{\mathrm{L}}^{\mathrm{C}} \mathrm{O}=0.089$ and $10^{23} b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}=10^{23} b_{\mathrm{V}}^{\mathrm{C}} \mathrm{O}=0.046$ are recommended, and used in discussing the conformations of 1,4-dioxan, 1,3-dioxolan, ethylene carbonate, methylal, and 1,8-cineole.

THE measurements here reported on trioxan have been made to confirm or amend the values for the longitudinal and transverse polarisabilities * of the $\mathrm{C}-\mathrm{O}$ bond ($b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}=0.081$ and $b_{\mathrm{T}}^{\mathrm{C}}-0=0.039$, respectively) earlier deduced by Le Fèvre and Le Fèvre ${ }^{1 a}$ from paraldehyde, using the structural specifications listed by Allen and Sutton. ${ }^{2}$ A check seemed desirable because Sutton, when editing details in a later complication (see M 206 of ref. 3), has noted the possibility that the data in ref. 2 were drawn from a mixture of forms, and not from the isomer having all its methyl groups disposed equatorially, as presumed in ref. 2. Trioxan (M 151 of ref. 3) is free from such doubts.

It is now found, however, that although the estimates of $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}$ and $b_{\mathrm{T}}^{\mathrm{CO}}$ given in ref. $1(a)$ appear satisfactorily applicable to trioxan, they nevertheless correspond to an inadequate electronic polarisation for the $\mathrm{C}-\mathrm{O}$ bond. Accordingly their replacement by $b_{\mathrm{L}}^{\mathrm{O}} \mathrm{O}=$ 0.089 and $b_{T}^{\mathrm{C}} \mathrm{O}=0.046$ is now proposed; these, with other previously determined bond polarisabilities ${ }^{4 b}$ are utilised below in discussing the conformations of dioxan, dioxolan, ethylene carbonate, methylal, and cineole.

Experimental

Materials.-Trioxan (from Du Pont de Nemours and Co. Inc.), recrystallised twice from sodium-dried ether, had m. p. 62-63 ${ }^{\circ}$. A commercial sample of 1,3-dioxolan (from Brotherton and Co. Ltd.) was distilled from sodium wire and the fraction having b. p. $78^{\circ} / 750 \mathrm{~mm}$. (d_{4}^{20} $1 \cdot 0600$) was collected and stored in the dark. Ethylene carbonate, m. p. 32-34 (from the Jefferson Chemical Co. Inc., Texas), had m. p. 38° after fractional distillation (b. p. 236$237^{\circ} / 750 \mathrm{~mm}$.). The 1,8 -cineole was purified through its crystalline o-cresol complex. After final distillation (b. p. $176^{\circ} / 760 \mathrm{~mm}$.) the liquid had $n_{\mathrm{D}}{ }^{20} 1.4584$ and $d_{4}^{20} 0.9251$; this stock was kept over sodium wire until required. Methylal was prepared as described by Fischer and Giebe; ${ }^{5}$ dehydration by sodium and distillation gave material with b. p. $42 \cdot 5^{\circ} / 760 \mathrm{~mm}$., $d_{4}^{20} 0.86012$, and $n_{\mathrm{D}}{ }^{20} 1 \cdot 3534$.

Techniques, Apparatus, Symbols, etc.-These have been described previously. ${ }^{1 a-c, 4 b}$ Symbols and equations used in calculating results from observational data have recently been summarised in ref. 6. The procedures for purifying benzene and carbon tetrachloride for use as solvents are also noted in the refs. just quoted. Results are given in the usual form in Tables 1 and 2. Table 1 is based on the following values at 25° for $n_{\mathrm{D}}, d, \varepsilon$, and B (for Na light) respectively, when $w_{2}=0: 1 \cdot 4973,0.87378,2 \cdot 2725$, and 0.410×10^{-7} for benzene, and $1 \cdot 4575,1 \cdot 5845$, 2.2270 , and 0.070×10^{-7} for carbon tetrachloride,

[^0]Table 1.
Incremental values of n, n^{2}, d, ε, and B for solutions at 25°.

$\Sigma \Delta B / \Sigma w_{2}=-3.08 \times 10^{-7}$.

Solvent: Benzene.

$10^{5} w_{2}$	296		1000	1415		1937	2508		2912
$-10^{4} \Delta n$	1		3	4		6	8		9
$-10^{4} \Delta n^{2}$	3		9	12		18	24		27
Whence $\Sigma \Delta n / \Sigma w_{2}=-0.0308 ; \Sigma \Delta n^{2} / \Sigma w_{2}=-0.0924$.									
$10^{5} w_{2}$	296		1415	1569		1937	2508		2912
$10^{5} \Delta d$	104		496	502		675	875		1013
Whence $\Sigma \Delta d / \Sigma w_{2}=0.3430$.									
$10^{5} w_{2} \quad \ldots \ldots \ldots \ldots .$.	151	178	210	263	302	330	935	1220	
$10^{4} \Delta \varepsilon \ldots \ldots \ldots \ldots \ldots$	462	551	638	806	903	990	2785	3612	
Whence $\Sigma \Delta \varepsilon / \sum w_{2}=29.94$.									
$10^{5} w_{2} \quad \ldots$.	35	147	342	538	711	772	951	997	1232
$10^{10} \Delta B \ldots \ldots \ldots \ldots .$.	9	41	96	149	199	208	256	272	320
Whence $\Sigma \Delta B / \sum w_{2}=27.07 \times 10^{-7}$.									

Table 2.
Total polarisations and molar Kerr constants at infinite dilution, molecular refractions, and dipole moments calculated from Table 1.

Solute	$\left(\alpha \varepsilon_{1}\right)_{\mathrm{w}_{2}=0}$	$(\beta)_{\mathbf{w}_{2}=0}$	$\gamma^{\prime} n_{1}{ }^{2}$	$\begin{gathered} \infty P \\ \text { (c.c.) } \end{gathered}$	R_{D} obsd. (c.c.)	$\mu(\mathrm{D})^{*}$	γ	δ	$0^{12} \infty\left({ }_{m} K_{2}\right)$
1,3,5-Trioxan \dagger	$10 \cdot 32$	-0.3325	$-0 \cdot 177$	$120 \cdot 5$	18.9	$2 \cdot 20{ }_{7}$	-0.040	-44.00	$-32 \cdot 0_{5}$
Dioxolan \ddagger	2.44,	$0 \cdot 1824$	-0.234_{5}	$54 \cdot 7$	17.0	$1 \cdot 343$	-0.053	1.034	$4 \cdot 28$
Ethylene carbonate \ddagger	29.94	$0 \cdot 3925$	-0.0924	$514 \cdot 1$	16.4	4.93	-0.021	66.02	350.5
Cineole \dagger	$2.96{ }_{1}$	-0.7091	$0.009{ }_{0}$	96.5	$45 \cdot 4$	$1.54{ }_{4}$	0.002	-8.22_{8}	-9.14
Methylal \dagger	0.739_{7}	-0.8307	-0.513_{5}	31.5	$19 \cdot 6$	0.729,	-0.124	-0.209	$0 \cdot 795$

* Calc. by taking ${ }_{\mathrm{D}} P=1 \cdot 05 R_{\mathrm{D}} . ~ \dagger$ Solvent: carbon tetrachloride. \ddagger Solvent: benzene.

Discussion

Dipole Moments.-Table 3 summarises previous estimates of μ for each of the six solutes here considered; to assist comparison with Tables 1 and 2 , the values recorded for the total and distortion polarisations are also quoted. Our ${ }_{\infty} P_{2}$ for trioxan is ca. 5 c.c. greater than that measured (in benzene) by Calderbank and Le Fèvre, ${ }^{8}$ and the moment deduced is accordingly 0.05 D greater. Of the three previous determinations of μ for ethylene carbonate, that by Kempa and Lee ${ }^{12}$ is closest to the 4.9 D of Table 2. Our μ for dioxalan is definitely below that published by Cumper and Vogel, ${ }^{9}$ who however give no details of their material beyond noting it as a high-grade commercial product which was " extensively purified." The disagreement may be due to traces of water, for we find that dioxolan is difficult to preserve anhydrous and that its absorption in the $3500 \mathrm{~cm} .{ }^{-1}$ infrared region has a roughly linear relation to the $\alpha \varepsilon_{1}$ value exhibited by the corresponding solution; $\alpha \varepsilon_{1}$ of $2 \cdot 44_{9}$ given in Table 2 corresponds to a sample with no hydroxyl absorption. The ${ }_{\infty} P_{2}$ of cineole in carbon tetrachloride exceeds that in benzene by only 0.7 c.c.; were ${ }_{\mathrm{D}} P==R_{\mathrm{d}}=45.4$ c.c., the moments in these media would be 1.58 and 1.57 , respectively; as a vapour, ${ }^{13}$ over the range $200-300^{\circ}$, cineole has $\mu 1.58 \mathrm{D}$. For methylal, the ${ }_{\infty} P_{2}$'s in n-hexane and carbon tetrachloride are 30.6 and 31.5 c.c., respectively; either value gives an apparent moment of ca. 0.7 D , suggesting a similarity of conformations in both solvents. Nevertheless, the flexibility of methylal is'displayed by the polarisationtemperature studies on the gas by Kubo et al., ${ }^{15}$ which show the moment to rise progressively from 0.74 D at 34° to 1.13 D at 199°.

Anisotropy of Polarisability of the C-O Link.-The observed molar Kerr constant of trioxan is negative ($\mathbf{- 3 2 . 0} \mathbf{0}_{5} \times 10^{-12}$); all physical evidence ${ }^{\mathbf{3 , 7 , 8 , 1 6 , 1 7}}$ to date is consistent with a " chair" configuration for this molecule; therefore, the two triangles formed by joining the $\mathrm{O} \cdots \cdot \mathrm{O} \cdots \cdots \mathrm{O}$ and the $\mathrm{C} \cdots \cdot \mathrm{C} \cdots \cdots \mathrm{C}$ centres will lie in parallel planes. If the

Table 3.
Previous estimates of dipole moments, polarisations, etc.

Solute	Temp.	Medium or state	Moment (D)	∞P_{2} c.c.	$\begin{aligned} & \mathrm{o} P \text { c.c. } \\ & \text { used } \end{aligned}$	Ref.
1,3,5-Trioxan	30°	$\mathrm{C}_{6} \mathrm{H}_{6}$	2-18	114.4	18.8	7
	25	"	$2 \cdot 16$	$115 \cdot 3$	19.3	8
Dioxolan	25	,'	$1 \cdot 47$	61.28	$17 \cdot 15$	9
Ethylene carbonate	25	"	$4 \cdot 80$			10
	25	"	$4 \cdot 60$	Not quoted		11
	25	"	4.87	$510 \cdot 2$	$17 \cdot 8$	12
Cineole	25		1.57	$95 \cdot 8$	$45 \cdot 5$	13
Methylal	25	$n-\mathrm{C}_{6} \mathrm{H}_{14}$	$0 \cdot 67$	$30 \cdot 56$	21.27	14

$\mathrm{O}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ angles are the same (they are quoted in ref. 3 as $110^{\circ} \pm 1^{\circ}$ and $110^{\circ} \pm 2^{\circ}$, respectively), one of the three principal molecular semi-axes of polarisability (namely, b_{3}) and the direction of action of the molecular resultant dipole moment ($\mu_{\text {res }}$) should, by symmetry, be perpendicular to the planes of these triangles with the remaining two axes (b_{1} and b_{2}), of course, parallel to them. Further, also because of symmetry, b_{1} is equal to b_{2}. The difference $b_{1}-b_{3}$ can be obtained, by means of the usual equations, ${ }^{1 b, c}$ from the observed $\infty\left({ }_{m} K_{2}\right)$ and $\mu_{\text {ress }}$, while the sum $2 b_{1}+b_{3}$ should be accessible through

[^1]refractivity data. Numerically $b_{1}-b_{3}$ emerges from experiment as $\pm 0.059_{7} \times 10^{-23}$, but $2 b_{1}+b_{3}$ cannot be estimated with certainty in this case because the necessity of working with solutions makes unreliable any attempt to secure the electronic polarisation, ${ }_{\mathbf{e}} P=R_{\infty}$, by extrapolating data for R_{λ} against λ to R_{∞}. Alternatively, therefore, we take ${ }_{\mathrm{E}} P$ as either (a) $0.95 R_{\mathrm{D}}=17.955$ c.c., or (b) as the sum (18.80_{4} c.c.) of the bond electronic polarisations listed by Le Fèvre and Steel. ${ }^{18}$ Since $2 b_{1}+b_{3}=0 \cdot 11891 \times 10^{-23}{ }_{\mathrm{E}} P$, the total polarisabilities of trioxan are (a) 2.135×10^{-23} or (b) 2.2360×10^{-23}; the semi-axes for this molecule accordingly appear as $b_{1}=0.732 \times 10^{-23}$ and $b_{3}=0.672 \times 10^{-23}$ through (a), or $b_{1}=0.765 \times 10^{-23}$ and $b_{3}=0.705_{5} \times 10^{-23}$ through (b).

Now, using the bond lengths and angles given in ref. 3, together with the polarisability of the $\mathrm{C}-\mathrm{H}$ link as in refs. 1 and $4(a)$, but with $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}$ and $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}$ as unknowns, enables simultaneous equations to be written for b_{1} (trioxan) and b_{3} (trioxan); these yield solutions as follows:

	$10^{23} b_{\text {L }}^{\text {Co }}$	$10^{23} b_{-}^{\text {C-0 }}$
From source (a)	0.084	0.040
(b)	0.089	0.046

The results from (a) are close to those (0.081 and 0.039×10^{-23}) originally deduced by Le Fèvre and Le Fèvre, ${ }^{1 a}$ a fact illustrated by Table 4 in which b_{1} and b_{3} are computed for the " chair" model of trioxan by using the old values. The ${ }_{m} K$ calc. is -30.7×10^{-12}, against the $-32.0_{5} \times 10^{-12}$ observed. [Table 4 includes calculations for a boat and a

Table 4.
Polarisability semi-axes and molar Kerr constants computed for chair, boat, and planar models of trioxan.

(A)

(B)
Model C.*

$\left.\begin{array}{l}\mu_{1}=0 \\ \mu_{2}=0 \\ \mu_{3}=0\end{array}\right\}_{\mathrm{m}} K$ calc. $=+0.8$
(C)

* In the first two models the planes of the end triangles meet the central plane at $126.6^{\circ} . \quad \dagger b_{1}$, b_{2}, b_{3} are in 10^{-23} c.c. units. \ddagger Moment components are in D units. § Molar Kerr constants are in 10^{-12} units.
planar form; for each, an algebraically positive molar Kerr constant is forecast; the fact that the measured ${ }_{\infty}\left({ }_{m} K_{2}\right)$ is actually more, not less, negative than -30.7×10^{-12} supports the allocation of a chair-type configuration to trioxan as a solute and leaves no grounds for considering a boat-chair equilibrium or mixture.]

It is now suggested that of the three sets (i.e., those with $10^{23} b_{\mathrm{L}}^{0-0}=0.081,0.084$, or 0.089 , respectively) of polarisabilities for the $\mathrm{C}-\mathrm{O}$ bond, the last is to be preferred.

18 Le Fèvre and Steel, Chem. and Ind., 1961, 670.

Table 5.

Polarisability semi-axes, moment components, etc., calculated for four conformations of 1,4-dioxan.*

Model: chair (D).

Direction cosines with

	X	Y	Z		
$\int b_{1}=0.759_{2}$	0.9778	$0 \cdot 2096$	0	$\mu_{1}=0$	
$(0) \dagger\left\{\begin{array}{l}b_{2}=0.887{ }_{0}\end{array}\right.$	-0.2096	$0 \cdot 7778$	0	$\mu_{2}=0$	${ }_{\mathrm{m}} K=0.62$
$b_{3}=0.832_{6}$	0	0	1	$\mu_{3}=0$	
$\int b_{1}=0.764_{5}$	0.9751	0.2215	0	$\mu_{1}=0$	
	-0.2215	0.9751	0	$\mu_{2}=0$	${ }_{\mathrm{m}} K=0 \cdot 62_{5}$
(a) $\left\{\begin{array}{l}\text { b } \\ b_{3}=0.8411_{8}\end{array}\right.$	0	0	1	$\left.\mu_{3}=0\right\}$	
$\left\{b_{1}=0.787{ }_{2}\right.$	0.9940	$0 \cdot 1097$	0	$\mu_{1}=0$	
$(b) \dagger\left\{b_{2}=0.913_{3}\right.$	-0.1097	0.9940	0	$\mu_{2}=0$	${ }_{\mathrm{m}} K=0 \cdot 61_{0}$
$b_{3}=0.866_{3}$	0	0	1	$\mu_{3}=0$	

Model: Sym. boat (E). \ddagger

Model: unsym. boat (F). \ddagger

Model: Planar (G).

(0) $\left\{\begin{array}{lll}b_{1}=0.851_{4} & 1 & 0 \\ b_{2}=0.904_{6} & 0 & 1 \\ b_{3}=0.722_{8} & 0 & 0\end{array}\right.$
(a) $\left\{\begin{array}{lll}b_{1}=0.861_{4} & 1 & 0 \\ b_{2}=0.910_{6} & 0 & 1 \\ b_{3}=0.726_{8} & 0 & 0 \\ b_{1}=0.882_{3} & 1 & 0 \\ b_{2}=0.933_{7} & 0 & 1 \\ b_{3}=0.750_{8} & 0 & 0\end{array}\right.$
$\left.\begin{array}{ll}0 & \mu_{1}=0 \\ 0 & \mu_{2}=0 \\ 1 & \mu_{3}=0 \\ 0 & \mu_{1}=0 \\ 0 & \mu_{2}=0 \\ 1 & \mu_{3}=0 \\ 0 & \mu_{1}=0 \\ 0 & \mu_{2}=0 \\ 1 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=1 \cdot \mathbf{3}_{2}$

* See footnotes to Table 4 for units. \dagger To indicate which C-O polarisabilities are used: $(0)=$ original values from ref. $l(a),(a)=$ values from source (a) above, (b) values from source (b) above. \ddagger Moments calc. by using $\mu_{\mathrm{C}-\mathrm{o}}=1 \cdot 14_{5} \mathrm{D}$, and assuming all interbond angles are ca. $109 \cdot 5^{\circ}$.

Previously, when relating the longitudinal polarisabilities and stretching frequencies of links, Le Fèvre ${ }^{19}$ noted that a $b_{\mathrm{L}}^{\mathrm{C}-0}$ of $c a .0 .09 \times 10^{-23}$, at least, seemed more in place among results for other bonds than one of ca. 0.08×10^{-23}; moreover, the total ($\times 10^{23}$), $0.081+2 \times 0.039=0.159$, corresponds to an ${ }_{\mathrm{E}} P^{\mathrm{C}} \mathrm{CO}$ of 1.337 c.c. which is only 0.92 of $R_{\mathrm{D}}^{\mathrm{C}-\mathrm{O}}$ of 1.46 c.c. given by Vogel et al. for acetals ${ }^{20}$ and only 0.87 of the 1.54 c.c. quoted for ethers. ${ }^{20}$ The semi-axes now recommended for $\mathrm{C}-\mathrm{O}\left(v i z ., b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}=0.089, b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}=\bar{b}_{\mathrm{V}}^{\mathrm{C}-\mathrm{O}}=\right.$ 0.046×10^{-23}) agree with an ${ }_{\mathrm{E}} P$ of 1.52 c.c., i.e., 0.98_{7} of $R_{\mathrm{D}}^{\mathrm{C}-\mathrm{O}}$.

Since neither the $b_{\mathrm{L}}^{\mathrm{C}} / b_{\mathrm{T}}^{\mathrm{CO}}$ ratios nor the $b_{\mathrm{L}}^{\mathrm{C}} \mathrm{O}-b_{\mathrm{T}}^{\mathrm{C}} \mathrm{d}$ differences are much affected by these changes, molar Kerr constants calculated a priori for structures involving $\mathrm{C}-\mathrm{O}$ bonds will not be very sensitive to the data adopted for $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}$ and $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}$; the point is illustrated by the examples in Tables 5 and 6 below.

The Conformation of 1,4-Dioxan.-Electron diffraction studies ${ }^{21}$ by Sutton and Brockway, Kimura, and Aoki, and others, suggest that this molecule has a "chair" configuration in which the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ angles are nearly the same ($109^{\circ} \pm 1^{\circ}$ and $109.5^{\circ} \pm 1.5^{\circ}$, respectively); such a model should theoretically be non-polar. However the literature ${ }^{8,22-24}$ lists values ranging from 0 to 0.45 D ; either, therefore, the atomic polarisation has been sometimes underestimated, or-in the light of the high-temperature dielectric constant effects noted by Gibbs and Armstrong et al. ${ }^{23}$ with dioxan vapour-this ether as a liquid or solute is an equilibrium of "chair" and " boat" forms. Against the last view is Malherbe and Bernstein's careful reinvestigation ${ }^{25}$ of the Raman and infrared spectra of liquid dioxan, the vibrations in which could be assigned on the basis alone of the (" chair '") point group $C_{2 h}$, and also the apparent constancy of the total polarisation of this material from 0.7° below its m . p. to at least 20° above. ${ }^{26}$

To investigate the matter further the principal axes of the polarisability ellipsoids of the four possible conformations (" chair," symmetrical " boat," unsymmetrical " boat," and planar forms) have been calculated (Table 5).

It is seen that of the calculated ${ }_{m} K$'s, only those for the " chair" and the planar form are algebraically positive. From the following experimental data for dioxan at $25^{\circ}: \varepsilon=$

(I)

(II)
$2.2090 ; n_{\mathbf{D}}=1.4202 ; d=1.0280 ; B_{\mathrm{D}}=0.068 \times 10^{-7}$; the molar Kerr constant for liquid dioxan follows as $+1.0 \times 10^{-12}$, i.e., positive and slightly greater than the values for the first isomer reported in Table 5. Thus the likelihood of either of the other two non-planar forms being present at room temperature seems small. The flat model, although allowed by present results, is, of course, rejected on the grounds that in it H $\cdot \mathrm{H}$ repulsions and valency angle strains will exceed those in the "chair" structure.

Conformations of 1,3-Dioxolan and Ethylene Carbonate.-The infrared and Raman spectra ${ }^{27}$ of 1,3 -dioxolan have indicated a non-planar structure; an earlier reference

19 Le Fèvre, Proc. Chem. Soc., 1959, 363.
${ }^{20}$ Vogel, Cresswell, Jeffrey, and Leicester, J., 1952, 514.
${ }^{21}$ Sutton and Brockway, J. Amer. Chem. Soc., 1935, 57, 473; Kimura and Aoki, J. Chem. Soc. Japan, 1951, 72, 169.
${ }^{22}$ Wesson, " Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.
${ }^{23}$ Gibbs, Discuss. Faraday Soc., 1951, 10, 122; Armstrong, Le Fèvre, and Yates, Austral. J. Chem., 1958, 11, 147.
${ }^{24}$ Marchal and Lapp, J. Polymer Sci., 1958, 27, 571.
${ }^{25}$ Malherbe and Bernstein, J. Amev. Chem. Soc., 1952, 74, 4408.
${ }^{26}$ Yasumi and Shirai, Bull. Chem. Soc. Japan, 1955, 28, 193; cf. also Vaughan, Phil. Mag., 1939, 27, 669.
${ }^{27}$ Barker, Bourne, Pinkard, and Whiffen, J., 1959, 802.
(M 151 of ref. 3) also suggested such a form, with all angles approximately 108°. Neither of these sources states the degree of puckering of the ring. Although intervalency angles of ca. 108° make feasible a flat structure (I), repulsions between hydrogen atoms on neighbouring carbon atoms should tend to cause non-planarity. Several non-planar models are possible; of these, only type (II), in which the four $\mathrm{C}-\mathrm{H}$ bonds are staggered, is considered here. The triangle $\mathrm{O}_{(1)}-\mathrm{C}_{(2)}-\mathrm{O}_{(3)}$ is taken as the plane containing the arbitrary axes X and Y, with Y parallel to the $\mathrm{O}_{(3)} \cdots \mathrm{O}_{(1)}$ line; the $\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$ bond is twisted through ϕ° so that these carbon atoms are respectively above and below their projections in the $X Y$ plane. It follows that the line joining the mid-point of $\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$ to the centre of $\mathrm{C}_{(2)}$ is parallel to the X-axis and to the direction of action of the resultant moment ($\mu_{\text {res }}$).

Relevant calculations are in Table 6. The observed ${ }_{m} K$ is $4 \cdot 2_{8} \times 10^{-12}$ (Table 2).

Table 6.
Polarisability semi-axes, moment components, etc., for two models of 1,3-dioxolan.*
Planar model (I)

For the planar form, the ${ }_{\mathrm{m}} K$ calc. is ca. 9×10^{-12}, but for a version of (II) with $\phi=48^{\circ}$ (found by trial and error) the ${ }_{\mathrm{m}} K$ calc. is in agreement with experiment.

A non-planar ring has also been suggested for ethylene carbonate; ref. 3 (M 148) shows the $\mathrm{C}_{(3)} \mathrm{C}_{(4)}$ bond in (III) rotated by 20° in the $Y Z$ plane, thus giving model (IV). The angles adopted for (III) are: at $\mathrm{C}_{(1)} 112^{\circ}$, at $\mathrm{O}_{(2)}$ and $\mathrm{O}_{(5)} 110^{\circ}$, at $\mathrm{C}_{(3)}$ and $\mathrm{C}_{(4)} 104^{\circ}$; for (IV) : at $\mathrm{C}_{(1)} 111^{\circ}$, at $\mathrm{O}_{(2)}$ and $\mathrm{O}_{(5)} 109^{\circ}$, at $\mathrm{C}_{(3)}$ and $\mathrm{C}_{(4)} 102^{\circ}$ (cf. ref. 3). Table 7 summarises calculations for form (III) and for form (IV) with $\phi=20^{\circ}$ or 72°; the larger value of ϕ is that required to bring the calculated ${ }_{\mathrm{m}} K$ to parity with that observed.

However, the degree of puckering when $\phi=72^{\circ}$ seems high and abnormal. (The molecule contains one usually trigonal carbon atom and is therefore already strained if

(III)

(IV)
the angle at $\mathrm{C}_{(1)}$ is $111-112^{\circ}$; non-planarity will increase this strain. Hydrogenhydrogen repulsions should not be expected to cause two $\mathrm{C}-\mathrm{H}$ bonds to be staggered more than $c a .60^{\circ}$.) The difficulty in reconciling the observed with the calculated molar Kerr constants may be due to the use of ketonic polarisabilities as drawn ${ }^{28}$ from acetone. The $\mathrm{C}=\mathrm{O}$ group in ethylene carbonate is markedly different from that in acetone: it is

[^2]shorter ($1 \cdot 15$ compared with $1.22 \AA$), ${ }^{3}$ and its infrared stretching absorption occurs at a higher frequency (1820 - 1830 compared with ca. $1720 \mathrm{~cm} .^{-1}$). ${ }^{29,30}$ We are aware that, as advised explicitly before (e.g., ref. l(b), p. 302, or ref. $4(a)$, p. 3), bond polarisabilities for use in a particular situation should be those deduced from as similar a situation as possible,

Table 7.
Polarisability semi-axes, moment components, etc., for three models of ethylene carbonate.*
Planar model (III)
Direction cosines with
(b)

X	Y	Z
1	0	0
0	1	0
0	0	1

$$
\left.\begin{array}{l}
\mu_{1}=4 \cdot 93 \\
\mu_{2}=0 \\
\mu_{3}=0
\end{array}\right\}_{\mathrm{m}} K=480
$$

Non-planar model (IV; $\phi=20^{\circ}$)

$$
\begin{align*}
& \left\{\begin{array}{lllll}
b_{1}=0.802_{7} & 1 & 0 & 0 & \mu_{1}=4.93 \\
b_{2}=0.736_{4} \\
b_{3}=0.521_{\mathrm{g}} & 0 & 0.9985 & 0.0541 & \mu_{2}=0 \\
0 & -0.0541 & 0.9985 & \mu_{3}=0
\end{array}\right\}{ }_{\mathrm{m}} K=469 \tag{b}\\
& \text { Non-planar model (IV; } \left.\phi=72^{\circ}\right) \\
& \left\{\begin{array}{lllll}
b_{1}=0.773_{9} & 1 & 0 & 0 & \mu_{1}=4.93 \\
b_{2}=0.678_{4} & 0 & 0.9954 & 0.0958 & \mu_{2}=0 \\
b_{3}=0.608_{7} & 0 & -0.0958 & 0.9954 & \mu_{3}=0
\end{array}\right\}_{\mathrm{m}} K=351
\end{align*}
$$

(b)

* Units as above. \dagger See footnote to Table 5
yet to date no molecules with such unusual ketone groups have been studied from the present viewpoint. In the interim, therefore, we note that with $r=1 \cdot 15 \AA$ and $v_{s t r}$ ($\mathrm{C}=\mathrm{O}$) taken as $1825 \mathrm{~cm} .^{-1}$, Le Fèvre's equation ${ }^{19}$ indicates a $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{O}}$ around $0 \cdot 18$, i.e., lower than the 0.230 found satisfactory hitherto with ketones. ${ }^{31}$ The chief effect of diminishing $b_{\mathrm{L}}^{\mathrm{O}=0}$ will be to reduce the b_{1} 's shown in Table 7. Because of the large $\mu_{\text {res }}$, the ${ }_{\mathrm{m}} K^{\prime}$'s calculated are sensitive to the term $2 b_{1}-b_{2}-b_{3}$, and in the (b) sets for the planar and the $\phi=20^{\circ}$ model an alteration of $b_{\mathrm{L}}^{\mathrm{C}=\mathrm{O}}$ from 0.23 to 0.20 leads to $\mathrm{m}^{\prime} \mathrm{S}^{\prime}$ of 357 and $349 \times$ 10^{-12}, respectively, the lower of these being close to that observed (Table 2).

Conformation of 1,8 -Cineole.-In the absence from the literature of structural details for this molecule, "Barton" models have been utilised. With $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths of 1.54 and $1.42 \AA$, respectively, a form (V) appears in which intervalency angles (measured by hand) are $a=109^{\circ}, b=110^{\circ}, c=112^{\circ}, d=66^{\circ}$, and $e=70^{\circ}$. The eight hydrogen atoms associated with bonds 2 and 5 are eclipsed, but it seems possible to relieve this situation by twisting bonds 2,5 , and 8 by 15° with respect to the $A O B$ line; two mirror-image variants (Va) and (Vb) are thus created. In (Va), on looking at the model along $A O B$, bonds 1,6 , and 9 are seen 7.5° clockwise, and bonds 3,4 , and 7 are 7.5° anticlockwise, to $O Q, O P$, and $O R$ (the same description applies, of course, to (Vb), but with the words clockwise and anticlockwise interchanged). The point O is the centre of $A B$; P, Q, and R are the centres of bonds 5,2 , and 8 ; the lines $O P, O Q$, and $O R$ meet at 120° at O . In (Va) or (Vb) angles are found as follow: $\mathrm{a}=107^{\circ}, \mathrm{b}=108^{\circ}, \mathrm{c}=110^{\circ}, \mathrm{d}=64^{\circ}$, and e $=68^{\circ}$. Arbitrary axes $O X, O Y$, and $O Z$ are chosen with $O X$ along $A O B$ and $O Z$ along $O R$. The resultant moment then acts at 36° to $O Z$ in the $Z O X$ plane for structure (V), and slightly divergently from this plane for structures (Va) or (Vb) which accordingly have $\mu_{O X}=0.860, \mu_{O Y}=0.135$, and $\mu_{O Z}=1.275 \mathrm{D}$. Calculations for cineole are in Table 8.

It is seen that the molar Kerr constant predicted for the conformation having staggered

[^3]C-H links approaches the observed value ($-9 \cdot 1_{4} \times 10^{-12}$) rather more closely than that corresponding to structure (V).

Conformation of Methylal.-With this solute problems are multiplied through the possibilities of internal rotations about the two inner $\mathrm{C}-\mathrm{O}$ bonds. At first sight methylal

(V)
might adopt an infinite number of conformations between the three extreme planar structures (VIa, b, and c). The dipole moments expected for these, with $\mu\left(\mathrm{Me}_{2} \mathrm{O}\right)=$ 1.32 D , are $2.64,0.9$, and $1.51_{4} \mathrm{D}$, respectively; the observed value at 25° is 0.73 D (Table 2),

Table 8.
Polarisability semi-axes, moment components, etc.,* for two \dagger models of 1,8 -cineole.
Model (V)

$(b) \ddagger\left\{\right.$| Direction cosines with | | | | |
| :--- | :--- | :--- | :--- | :--- |
| $b_{1}=1.835$ | X | 1 | Y | Z |
| $b_{2}=1.804$ | 0 | 0 | 0 | $\mu_{1}=0.90_{8}$ |
| $b_{3}=1.713$ | 0 | 0 | 0 | $\mu_{2}=0$ |
| | 0 | 1 | $\mu_{3}=1 \cdot 24_{9}$ | |$\}{ }_{\mathrm{m}} K=-10 \cdot 8$

Models (Va) and (Vb)
(b) $\quad\left\{\begin{array}{rrrrr}b_{1}=1.831 & 0.9980 & -0.0143 & 0.0620 & \mu_{1}=0.93_{5} \\ b_{2}=1.806 & 0.0061 & 0.9989 & 0.0470 & \mu_{2}=0.20_{0} \\ b_{3}=1.715 & -0.0633 & -0.0450 & 0.9970 & \mu_{3}=1.21_{2}\end{array}\right\}{ }_{\mathrm{m}} K=-9.2_{7}$
$*$ Units as above. \dagger Forms (Va) and (Vb) cannot be distinguished by either $\mu_{\text {res }}$ or ${ }_{\mathrm{m}} K . \quad \ddagger$ See footnote to Table 5.
a fact which suggests (VIb) as more nearly appropriate than (VIa) or (VIc). However, scale models show that (VIb) cannot be fully planar for steric reasons, but that forms having the terminal methyl groups above and below the $\mathrm{O}^{\cdot} \mathrm{CH}_{2} \cdot \mathrm{O}$ plane are feasible.

Table 9 reports calculations carried through for the above three structures and for four non-planar variants of them: (VId-f) in which the $\mathrm{O}-\mathrm{CH}_{3}$ bonds are twisted in opposite directions from their positions in the planar form (VIb) by $30^{\circ}, 60^{\circ}$, and 90°,

(VIa)

(VIb)

(VIc)
respectively, and (VIg) produced by similar 60° twists applied to (VIa). The $\mathrm{O}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}$ valency angles are taken as $109 \cdot 5^{\circ}$ from the electron-diffraction study by Aoki. ${ }^{32}$
${ }^{32}$ Aoki, J. Chem. Soc. Japan, 1953, 74, 110.

None of these seven conformations will exactly satisfy both the moment and the molar Kerr constant, although (VId) is nearest to doing so. Of course, mixtures can be devised to meet such a requirement [e.g., 42% of (VId) and of (VIf) with $10 \cdot 7 \%$ of (VIe)

Table 9.
Polarisability semi-axes, moment components, etc.,* for four conformations of methylal.
Model (VIa)
Direction cosines with \dagger
$(b) \ddagger\left\{\begin{array}{lllll} & b_{1}=0.752_{\mathrm{B}} & X & Y & Z \\ b_{2}=0.811_{4} & 0 & 0 & 0 & \mu_{1}=2.64 \\ b_{3}=0.696 & 0 & 1 & 0 & \mu_{2}=0 \\ & 0 & 1 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=-0.34_{\mathrm{s}}$
(b) $\begin{cases}b_{1}=0.804_{6} & 1 \\ b_{2}=0.759_{4} & 0 \\ b_{3}=0.696 & 0\end{cases}$

Model (VIb)
$\left.\begin{array}{lll}0 & 0 & \mu_{1}=0 \cdot 9 \\ 1 & 0 & \mu_{2}=0 \\ 0 & 1 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=+7 \cdot 3$
Model (VIc)
(b) $\begin{cases}b_{1}=0.772 & 1 \\ b_{2}=0.792 & 0 \\ b_{3}=0.696 & 0\end{cases}$
$\left.\begin{array}{lll}0 & 0 & \mu_{1}=0 \\ 1 & 0 & \mu_{2}=1 \cdot 51_{4} \\ 0 & 1 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=+15 \cdot 1$
(b) $\left\{\begin{array}{cccll}b_{1}=0.7844_{5}^{*} & 1 & 0 & 0 & \mu_{1}=0.63 \\ b_{2}=0.758_{0} & 0 & 0.9997 & 0.0216 & \mu_{2}=0 \\ b_{3}=0.717_{5} & 0 & -0.0216 & 0.9997 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=+2 \cdot 2_{3}$
(b) $\left\{\begin{array}{lllll}b_{1}=0.7443 & 1 & 0 & 0 & \mu_{1}=0.05 \\ b_{2}=0.755_{4} & 0 & 0.8980 & 0.4399 & \mu_{2}=0 \\ b_{3}=0.760_{3} & 0 & -0.4399 & 0.8980 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=0.00_{4}$
(b) $\left\{\begin{array}{clcll}b_{1}=0.727_{5} & 1 & 0 & 0 & \mu_{1}=0.75_{4} \\ b_{2}=0.745_{8} & 0 & 0.7891 & 0.6143 & \mu_{2}=0 \\ b_{3}=0.789_{7} & 0 & -0.6143 & 0.7891 & \mu_{3}=0\end{array}\right\}{ }_{m} K=-2 \cdot 2_{8}$
(b) $\left\{\begin{array}{cccll}b_{1}=0.731_{2} & 1 & 0 & 0 & \mu_{1}=1.8 \\ b_{2}=0.748_{6} & 0 & 0.8988 & 0.4384 & \mu_{2}=0 \\ b_{3}=0.780_{2} & 0 & -0.4384 & 0.8988 & \mu_{3}=0\end{array}\right\}{ }_{\mathrm{m}} K=-11.8$

* Units as above. \dagger Axes X, Y, and Z disposed as indicated alongside (VIa-c). \ddagger See footnote to Table 5.
and $5 \cdot 3 \%$ of (VIc) should show an ${ }_{m} K$ of 0.8×10^{-12} and a μ of 0.73 D], but since the uncertainty of measurement of $\mathrm{m} K$'s, as of μ 's, increases with the smallness of these quantities it seems scarcely justified to invoke forms outside the range (VId-f) merely to adjust ${ }_{\mathrm{m}} K$ by 1.0×10^{-12} or μ by $0 \cdot 1 \mathrm{D}$. The conformations just mentioned thus resemble the gauche-type structures already proposed for methylal by Kubo et al., ${ }^{14-16}$ and, qualitatively at least, are harmoniously related to the helical arrangement described by Hengstenberg ${ }^{33}$ and Sauter ${ }^{33}$ for (solid) polyoxymethylene.

The award by the University of Sydney of an "A. E. and F. A. Q. Stephens" research scholarship to A. S. is gratefully acknowledged.

University of Sydney, N.S.W., Australia.
[Received, July 17th, 1962.]
${ }^{33}$ Hengstenberg, Ann. Phys., 1927, 84, 245; Sauter, Z. phys. Chem., 1932, B, 18, 417; 1933, B, 21, 186.

[^0]: * Polarisabilities of bonds or molecules are quoted throughout this paper in 10^{-23} c.c. units.
 ${ }^{1}$ Le Fèvre and Le Fèvre, (a) J., 1956, 3549; (b) Rev. Puve Appl. Chem., 1955, 5, 261 ; (c) Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ. Inc., New York, 3rd edn., Vol. I, p. 2459.
 ${ }_{2}$ Allen and Sutton, Acta Cryst., 1950, 3, 46.
 3 "Tables of Interatomic Distances and Configuration in Molecules and Ions," ed. Sutton, Chem. Soc. Spec. Publ. No. 11, 1958.
 ${ }^{4}$ Le Fèvre, (a) Proc. Roy. Soc. New South Wales, 1961, 95, 1; (b) " Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. 2.
 ${ }^{5}$ Fischer and Giebe, Ber., 1897, 30, 3054.
 6 Ie Fèvre and Sundaram, J., 1962, 1494.

[^1]: " Maryott and Acree, J. Res. U.S. Nat. Bur. Stds., 1944, 33, 71.
 \& Calderbank and Le Fèvre, J., 1949, 199.
 ${ }^{9}$ Cumper and Vogel, J., 1959, 3521.
 ${ }^{10}$ Arbuzov and Shavsha, Doklady Akad. Nauk S.S.S.R., 1949, 68, 1045.
 ${ }^{11}$ Longster and Walker, Trans. Faraday Soc., 1953, 49, 228.
 ${ }^{12}$ Kempa and Lee, J., 1958, 1936.
 ${ }^{13}$ Freeman, Le Fèvre, and Maramba, $J ., 1952,1649$.
 ${ }_{14}$ Uchida, Kurita, and Kubo, J. Polymer Sci., 1956, 19, 365.
 15 Kubo, Sci. Papers Inst. Phys. Chem. Res. (Tokyo), 1936, 29, 122.
 ${ }_{16}$ Mizushima, Morino, and Kubo, Phys. Z., 1937, 38, 459.
 17 Ramsay, Trans. Faraday Soc., 1948, 44, 289.

[^2]: ${ }^{28}$ Le Fèvre, Le Fèvre, and Rao, $J ., 1959,2340$.

[^3]: ${ }^{29}$ Angell, Trans. Faraday Soc., 1956, 52, 1178.
 so Hartwell, Richards, and Thompson, J., 1948, 1436.
 ${ }^{31}$ Aroney, Izsak, and Le Fèvre, J., 1961, 4148.

